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Abstract

A method for solving nonlinear Inverse Heat Conduction Problems (IHCPs) using a Reduced Model (RM) is pro-

posed in this numerical study. In a first step, RM is identified through a specific procedure using optimization tech-

niques and a Detailed Model (DM). Compared to DM, RM allows drastic reduction of computing time without

significant loss of accuracy. The second step is the sequential resolution of the inverse problem using RM, taking into

account data at Future Time Steps in order to estimate a time-varying thermal input from the knowledge of simulated

temperature measurements inside the domain. A transient 3D example with thermal conductivity linearly dependant on

temperature illustrates the method. It is shown, on this example, that the proposed inversion algorithm using a simple

Euler implicit scheme in time gives good results with RM, whereas it does not work with DM.

� 2004 Elsevier Ltd. All rights reserved.

1. Introduction

Although direct problems consist in the determina-

tion of a state variable field, temperature for example,

when a mathematical model is available and initial and

boundary conditions are known, inverse problems are

concerned with the estimation of unknown quantities

such as thermophysical properties, initial or boundary

conditions, geometric characteristics, from experimental

data (temperature or heat fluxes measurements for

example).

Inverse methods can be very useful when dealing with

industrial systems involving heat transfer in which direct

temperature or heat flux measurements are difficult, even

impossible, to obtain. Such a situation occurs when the

zone of interest is not accessible, or when severe condi-

tions would destroy the sensors. Inverse methods pro-

vide tools to estimate unknown quantities from the

knowledge of information in another part of the do-

main. Such inverse problems are often ill-posed, that

is: (i) the solution may not exist; (ii) if a solution exists,

it can be not unique; (iii) the problem can be unstable. In

order to improve the stability of the solution, regulariza-

tion techniques have been developed by pioneering

authors. Let us mention the Function Specification

Method taking into account information at Future Time

Steps [1], the Tikhonov�s Regularization Method [2], the

Iterative Regularization Method [3], and the Singular Va-

lue Decomposition (SVD) technique [4].
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Generally multidimensional Inverse Heat Conduc-

tion Problems (IHCPs) require large memory size and

computing time induced by large systems of equations

associated with the spatial meshing of the domain.

Whole time domain methods using conjugate gradi-

ents and an adjoint problem [5–7] have been used to

solve 3D IHCPs with unknown boundary conditions.

Algorithms and equations for solving nonlinear 3D

IHCPs in regular coordinates (rectangular, cylindrical,

spherical) by means of the conjugate gradients method

and the Iterative Regularization Method are given in

[7]. Whole time domain approaches offer to use data at

all time steps but of course unknowns at all times are

estimated together and the cost in terms of computing

time can be important.

Sequential methods have also been developed for the

resolution of nonlinear IHCPs. They allow faster com-

putations but one may have to deal with larger oscilla-

tions of the solution with respect to time. An

algorithm using the Function Specification Method has

been proposed for large variations of thermophysical

properties with temperature [8]. For small variations of

thermophysical properties, it has been proposed to line-

arise the problem at each time step of inversion, by

assuming constant properties for all Future Time Steps

[9]. The algorithm is then not iterative in that case.

Using the same assumption, a 2D general algorithm,

coupling the Function Specification Method and the Tik-

honov�s Regularization Method, is proposed in [10].

These two techniques are also coupled in an approach

based on Boundary Elements Method (BEM) and Kir-

chhoff transform for solving multidimensional nonlinear

IHCPs [11]. The BEM allows to reduce model size in

comparison with classical discretization techniques by

limiting the mesh to the boundaries.

When considering transient systems, it is possible to

achieve model size reduction by using reduction methods.

They consist in replacing a classical large size model or

Detailed Model (DM) obtained by a spatial discretiza-

tion of the domain using Finite Elements, Finite Vol-

umes, Finite Differences, etc., and whose order N

corresponds to the number of discretization nodes, by

a Reduced Model (RM) with n� N equations to solve.

The use of a RM instead of a DM for solving the inverse

problem allows important saves in CPU time [12–15].

The Karhunen-Loève–Galerkin method [16], based

on statistical considerations and also known as Proper

Orthogonal Decomposition (POD), has been applied

to build RMs used for solving nonlinear inverse prob-

lems, of conduction [14] as well as of natural convection

[15].

The inverse method described in this paper can be ap-

plied to multidimensional nonlinear IHCPs, for the esti-

mation of a time-varying boundary condition or internal

heat source. It uses a RM which is identified prior to the

inverse problem resolution. The identification procedure

is detailed in [17]. The inverse algorithm is sequential

and Future Time Steps coupled with the Function Speci-

fication Method can be used to improve the quality of

estimations. Thanks to the RM small size, computations

Nomenclature

Latin characters

A, B, C, E, F, G, H, P, Q, T, V, X, Y, Z, C, Y matri-

ces and vectors

Cp specific heat (Jkg�1K�1)

DM,RM Detailed Model, Reduced Model

dimz(n) = n(n + 1)/2, n integer

N DM order i.e. number of discretization

nodes

n RM order

nt number of time steps

nf number of Future Time Steps (or FTS)

q output vector dimension

t time (s)

U thermal input

Greek symbols

a under-relaxation parameter

Dt time step (s)

k thermal conductivity (Wm�1K�1)

q density (kgm�3)

X, W, R matrix and vectors

r standard deviation of noise (�C)
rY mean quadratic error on temperature data

(�C)
rU mean quadratic error on estimates (Wm�2)

Subscripts

k time index

s static

Superscripts

• derivation with respect to time

m measured

ˆ estimated

it iteration index

�1, �j inverse of matrix, power of the inverse
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are very fast and authorise the use of iterations for the

treatment of nonlinearities.

2. Expression of the detailed model

Let us assume a system composed of a purely diffu-

sive medium whose thermal conductivity varies with

temperature according to the following law:

kðr; T Þ ¼ k0ðrÞ þ f ðr; T Þ ð1Þ

where f is a function of position r and local temperature

T and k0(r) is a conductivity reference distribution.

Density and specific heat are supposed to be invari-

ant with temperature.

Transient energy equation governing heat transfer

through the domain is written:

qðrÞCpðrÞ
oT
ot
ðr; tÞ ¼ divðkðr; T Þ ~gradT ðr; tÞÞ ð2Þ

After spatial discretization (using Finite Elements,

Finite Volumes, Finite Differences, . . .), this equation

and the associated boundary conditions can then be

written under discrete matrix form known as ‘‘State

Space Representation’’, forming a DM of the system

[17]:

_T ðtÞ ¼ AT ðtÞ þ BUðtÞ þWðT ðtÞÞ
Y ðtÞ ¼ CT ðtÞ

(
ð3a;bÞ

where T(t) (dim. N) is the vector containing tempera-

tures of all discretization nodes, _T ðtÞ is the derivative

of vector T with respect to time, matrix A (dim. N, N)

is the state matrix of a linear system with same geometry

but constant thermal conductivity field k0(r), W(T(t))

(dim. N) is the vector gathering nonlinearities effects,

hence corresponding to term f(r, T) of Eq. (1). For each

node i, component Wi of vector W is the sum of nonlin-

ear contributions of node i with its neighbouring nodes.

U(t) is a thermal input (a heat flux density for instance)

and vector B (dim. N) is the command or input vector

linking nodes to U(t). Matrix C (dim. q, N) with q = N

is the observation or output matrix which allows to se-

lect a part of the whole temperature field T. This selec-

tion is contained in output vector Y(t) (dim. q).

3. Identification of the Reduced Model

3.1. Principle

The reduction method is described in detail in [17] and

can be summarised as follows. It derives from the Modal

Identification Method [12,13,18] developed for linear

systems. Starting from DM structure, RM structure is

defined. Elements (matrices) of this RM structure have

then to be identified. The identification principle is based

on the minimization of a squared residues functional

built with the discrepancy between system responses

(DMoutputs in this paper) on the one hand and RMout-

puts on the other hand, when a specific input signal is ap-

plied. In this study, due to nonlinearities, the reduction

method is applied to a mono-input/multi-outputs system.

3.2. Reduced model formulation

From Eqs. (3a,b), it has been shown in [17] that a

RM structure can be expressed under the form:

_X ðtÞ ¼ FX ðtÞ þ 1UðtÞ þ XZðX ðtÞÞ
Ŷ ðtÞ ¼ HX ðtÞ

(
ð4a;bÞ

where X(t) (dim. n) is a low dimensional state vector

(n� N), _X ðtÞ its derivative with respect to time. States

Xi(t) are coupled through nonlinearities.

Z(X(t)) (dim. dimz(n) = n(n + 1)/2) is the vector of

nonlinearities gathering products Xi(t)Xj(t):

ZðX ðtÞÞ ¼
�
X 2

1ðtÞ X 1ðtÞX 2ðtÞ X 1ðtÞX 3ðtÞ � � �

X 1ðtÞXnðtÞ X 2
2ðtÞ X 2ðtÞX 3ðtÞ � � �

X 2ðtÞXnðtÞ � � � � � � X 2
n�1ðtÞ

Xn�1ðtÞXnðtÞ X 2
nðtÞ

�T
ð5Þ

where 1 is the vector whose dimension is n and all com-

ponents are equal to 1, U(t) is the thermal input, and

Ŷ ðtÞ (dim. q) is the approached output vector (such as

Ŷ ðtÞ � Y ðtÞ).
F (dim. n, n) is a diagonal matrix containing n char-

acteristic ‘‘eigenvalues’’ to be identified. X (dim.

n, dimz(n)) is the matrix quantifying the contribution

of components of nonlinear vector Z(X(t)) in each one

of the n coupled equations. Components of X have to

be identified. H (dim. q, n) is a reduced output matrix

which has to be identified.

3.3. Reduced model identification algorithm

The identification of components of matrices F, X
and H is realised through the minimization of a squared

residues functional Jred built with the discrepancy be-

tween responses of the system (in this study, outputs

of DM defined by Eqs. (3a,b)) on the one hand and out-

puts of RM defined by Eqs. (4a,b) on the other hand,

when a specific input signal is applied [17]:

J redðn; F ;X;HÞ ¼
Xq

i¼1

Xnt
j¼0
ðY iðtjÞ � Ŷ iðtjÞÞ2 ð6Þ

where �nt� is the number of time steps in the simulations

and the tj are the discretization times.
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Quadratic criterion Jred depends on RM order n.

Starting with n = 1, n is incremented and a RM is iden-

tified for each value of n until the gap between two suc-

cessive criterions is very low or until the discrepancy

between RM and DM�s responses is of the order of mag-

nitude of the precision wanted by the user.

The minimization algorithm uses linear least squares

coupled to a Quasi-Newton type method.

4. Resolution of the inverse problem using DM and RM

In this part is presented the inversion algorithm

developed to estimate an unknown boundary condition

U(t) from the knowledge of temperature data Y(t), when

the system is modelled with a DM (Eqs. (3a,b)) or a RM

(Eqs. (4a,b)). The procedure is sequential in time and

Future Time Steps can be used to take into account lag-

ging and damping effects due to heat diffusion

[1,9,10,19], as well as to regularize the inverse problem.

4.1. Common state space representation for DM and RM

Both DM (Eqs. (3a,b)) and RM (Eqs. (4a,b)) can be

written under the following general form:

_V ¼ EV þ PU þ RðV Þ
Y ¼ QV

(
ð7a;bÞ

for DM :

V ¼ T ðdim: NÞ

E ¼ Aðdim: N ;NÞ

P ¼ Bðdim: NÞ

RðV Þ ¼ WðT Þðdim: NÞ

Q ¼ Cðdim: q;NÞ

8>>>>>>>><
>>>>>>>>:

and

for RM :

V ¼ X ðdim: n� NÞ

E ¼ F ðdim: n; nÞdiagonal

P ¼ 1ðdim: nÞ

RðV Þ ¼ XZðX Þðdim: nÞ

Q ¼ Hðdim: q; nÞ

8>>>>>>>><
>>>>>>>>:

4.2. Resolution of the steady regime

Knowing the steady data Ys, one searches Û s. Eqs.

(7a,b) in steady regime are written:

0 ¼ EV s þ PUs þ RðV sÞ
Y s ¼ QV s

�
ð8a;bÞ

As the problem is nonlinear, an initial guess is

needed. A good first approximation is Û
it¼0
s ¼ Û

lin

s , solu-

tion of the inverse problem with the steady state linear

model obtained by zeroing the nonlinear term R(Vs) in

Eq. (8a). From this model one gets: CUs = Y with

C = �QE�1P and Y = Ys.

The solution given by linear least squares is Û
it¼0
s ¼

Û
lin

s ¼ ðC
TCÞ�1CTY.

The initial guess for the state vector Vs is then writ-

ten: V̂
it¼0
s ¼ V̂

lin

s ¼ �E�1PÛ
lin

s .

From Eqs. (8a,b), one can write: �QE�1PUs =

Ys + QE�1R(Vs).

Iterations are thus performed on the following

equation:

Û
itþ1
s ¼ ðCTCÞ�1CTYit ð9Þ

with

C ¼ �QE�1P ð10Þ

and

Yit ¼ Y s þ QE�1RðV̂ it

s Þ ð11Þ

where V̂
it

s is the estimation of Vs at iteration �it�. Then
V̂

itþ1
s ¼ �E�1ðPÛ itþ1

s þ RðV̂ it

s ÞÞ.
This sequence is performed until convergence is ob-

tained i.e.: Û
itþ1
s ffi Û

it

s . The estimated output vector

can be computed using state vector V̂
cv

s estimated after

convergence: Ŷ s ¼ QV̂
cv

s .

The proposed method allows to estimate a thermal

input in steady state from one or more temperature data.

4.3. Resolution of the transient regime

The previous method also permits to initialise an

identification in transient regime by using for the first

time step:

V̂ 0 ¼ V̂
cv

s and Û 0 ¼ Û
cv

s

Knowing Yk+1 at time step k + 1 and V̂ k at time step k,

one searches Û kþ1.

Starting with V̂
it¼0
kþ1 ¼ V̂ k as initial guess for the time

step, iterations on the solution of Eqs. (7a,b) are per-

formed: from Eq. (7a), one can write, with Dt the time

step and an Euler implicit scheme:

_V ¼ V kþ1 � V k

Dt
¼ EV kþ1 þ PUkþ1 þ RðV kþ1Þ

Then

V kþ1 ¼ ðI � EDtÞ�1½V k þ PDtUkþ1 þ RðV kþ1ÞDt� ð12Þ

Hence, according to Eq. (7b):

Y kþ1 ¼ QðI � EDtÞ�1½V k þ PDtUkþ1 þ RðV kþ1ÞDt� ð13Þ

which can also be written: CUk+1 = Y with

C ¼ QðI � EDtÞ�1PDt ð14Þ

and Y = Yk+1 � Q(I � EDt)�1[Vk + R(Vk+1)Dt].
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The solution given by linear least squares is

Û kþ1 ¼ ðCTCÞ�1CTY.
Iterations are thus performed on the following

equation:

Û
itþ1
kþ1 ¼ ðC

TCÞ�1CTYit ð15Þ

with

Yit ¼ Y kþ1 � QðI � EDtÞ�1½V̂ k þ RðV̂ it

kþ1ÞDt� ð16Þ

where V̂ k is the estimation of Vk and V̂
it

kþ1 is the estima-

tion of Vk+1 at iteration it. Then

V̂
itþ1
kþ1 ¼ ðI � EDtÞ�1½V̂ k þ PDtÛ

itþ1
kþ1 þ RðV̂ it

kþ1ÞDt�

This sequence is performed until convergence is ob-

tained i.e.: Û
itþ1
kþ1 ffi Û

it

kþ1. The estimated output vector

is can be computed using state vector V̂
cv

kþ1 estimated

after convergence: Ŷ kþ1 ¼ QV̂
cv

kþ1.

4.3.1. Introduction of Future Time Steps (FTS):

Let us use data at nf Future Time Steps k + 2, k + 3,

k + 1 + f, . . ., k + 1 + nf (f = 1, 2, . . . , nf). The Function

Specification Method [1,9,10,12,13,19] is used to make

an hypothesis for the unknown input at the nf FTS:

Ukþ1þf ¼ Ukþ1 ¼ constant; f 2 ½1; nf � ð17Þ

Remark. The way to choose the number nf of Future

Time Steps is explained at the beginning of Section 6.3

(example of application).

For f = 1. Eq. (13) written for Yk+2 = Yk+1+1 leads to

Y kþ2 ¼ QðI � EDtÞ�1½V kþ1 þ PDtUkþ2 þ RðV kþ2ÞDt�

Injecting Eq. (12), one obtains

Y kþ2 ¼ QðI � EDtÞ�1 ðI � EDtÞ�1½V k þ PDtUkþ1 þ RðV kþ1ÞDt�
h

þPDtUkþ2 þ RðV kþ2ÞDt
i

which can also be written:

Y kþ2 ¼ QðI � EDtÞ�2½V k þ PDtUkþ1 þ RðV kþ1ÞDt�

þ QðI � EDtÞ�1½PDtUkþ2 þ RðV kþ2ÞDt�

According to hypothesis (17), one has

Y kþ2 ¼ QðI � EDtÞ�2½V k þ RðV kþ1ÞDt�

þ QðI � EDtÞ�1RðV kþ2ÞDt þ Q½ðI � EDtÞ�1

þ ðI � EDtÞ�2�PDtUkþ1

which can be rewritten:

QbðI � EDtÞ�1 þ ðI � EDtÞ�2cPDtUkþ1

¼ Y kþ2 � QðI � EDtÞ�2½V k þ RðV kþ1ÞDt�

� QðI � EDtÞ�1RðV kþ2ÞDt

For a current value f, it can be shown that using Eqs.

(12), (13) and (17).

Y kþ1þf ¼ QðI � EDtÞ�ðfþ1Þ½V k þ RðV kþ1ÞDt�

þ
Xf
j¼1

QðI � EDtÞ�jRðV kþ1þf�jþ1ÞDt

þ Q
Xfþ1
j¼1
ðI � EDtÞ�j

" #
PDtUkþ1

which can also be written:

Q
Xfþ1
j¼1
ðI � EDtÞ�j

" #
PDtUkþ1

¼ Y kþ1þf � QðI � EDtÞ�ðfþ1Þ½V k þ RðV kþ1ÞDt�

�
Xf
j¼1

QðI � EDtÞ�jRðV kþ1þf�jþ1ÞDt ð18Þ

The nf equations (18) (f = 1, 2, . . . , nf) can be written

using estimated state vectors, and then gathered in a glo-

bal matrix form:

CU itþ1
kþ1 ¼ Yit ðCdim: ðq� ðnf þ 1Þ; 1Þ;Yit dim: q� ðnf þ 1ÞÞ

Iterations are thus performed on the linear least squares

solution:

Û
itþ1
kþ1 ¼ ðC

TCÞ�1CTYit ð19Þ

with

C ¼

QðI � EDtÞ�1PDt
Q½ðI � EDtÞ�1 þ ðI � EDtÞ�2�PDt

Q½ðI � EDtÞ�1 þ ðI � EDtÞ�2 þ ðI � EDtÞ�3�PDt
..
.

Q
Pfþ1
j¼1
ðI � EDtÞ�j

" #
PDt

..

.

Q
Pnfþ1
j¼1
ðI � EDtÞ�j

" #
PDt

2
66666666666666666664

3
77777777777777777775
ð20Þ

and
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After Û
itþ1
kþ1 is obtained, the V̂

itþ1
kþ1þf , 0 6 f 6 nf are

computed successively, using

V̂
itþ1
kþ1þf ¼ ðI � EDtÞ�1 V̂

itþ1
kþf þ PDtÛ

itþ1
kþ1þf þ RðV̂ it

kþ1þf ÞDt
h i

which is written, according to hypothesis (17):

V̂
itþ1
kþ1þf ¼ ðI � EDtÞ�1 V̂

itþ1
kþf þ PDtÛ

itþ1
kþ1 þ RðV̂ it

kþ1þf ÞDt
h i

One starts with f = 0 with: V̂
itþ1
k ¼ V̂ k 8it.

Values RðV̂ it¼0
kþ1þf Þ, 06 f6 nf, are those computed

after convergence in the previous time step of inversion,

i.e. theRðV̂ cv

kþf Þ. For the first time step of inversion,RðV̂ cv

s Þ
computed after convergence in the initial steady state, is

taken as initial value for the RðV̂ it¼0
kþ1þf Þ, 06 f 6 nf.

4.4. Remarks

• Future Time Steps are not only taking into account

lagging and damping effects, but also regularize the

inverse problem because it becomes overdetermined

as soon as nf > 0 (nf = 0 corresponds to ‘‘no FTS’’

and only T(k + 1) is used to estimate U(k + 1),

nf = 1 corresponds to the use of one future tempera-

ture T(k + 2) in addition to T(k + 1), etc.).

• At each time step, a single unknown is estimated,

thus the matrix CTC of the linear system to be solved

(Eq. (9), Eq. (15) or Eq. (19)) is a simple scalar, what-

ever the number of sensors and the number of Future

Time Steps. The condition number of CTC is there-

fore equal to 1 at each time step. The inverse problem

has then the best possible conditioning. As a conse-

quence, for the sequential resolution of the consid-

ered inverse problem, no additional regularization

such as Tikhonov�s regularization is necessary to

solve the linear system at each iteration of each time

step. In contrast, it would be useful if a whole time

domain method was used or in the case of the estima-

tion of more than one independent unknown.

5. Comments on the use of RM for solving inverse

problems

Although at each iteration of each time step, the size

of the system solved by linear least squares only depends

on the number of unknowns (limited to one in this

study), either with RM and DM, the computation with

RM is faster and easier than with DM.

The first advantage of RM is of course the smaller

size of the state vector V : although for both models,

a system of coupled nonlinear partial differential

equations of the first order in time has to be solved

to obtain the state vector, with DM one has to com-

pute the whole temperature field T (dim. N) at each

iteration of each time step, whereas the use of a

RM only requires the computation of the reduced

state vector X (dim. n� N) (cf. Eqs. (11), (16) and

(21)).

Moreover, the fact that F is diagonal is a great

advantage of the RM. This is underlined in Table 1 sum-

marizing the matrices to compute for the inverse prob-

lem resolution, according to the model used.

When using a RM, only inverses of diagonal matrices

F and (I � FDt) have to be computed. These matrices are

therefore easy to obtain. Furthermore, they have only

n� N components.

Conversely, in the DM case, it can be very difficult,

indeed even impossible, to compute inverses of matrices

A and (I � ADt) whose dimension is (N, N), especially

for large values of N.

That huge advantage is emphasised when Future

Time Steps are used, since the computation of powers

of the diagonal matrix (I � FDt)�1 is much more easier

than the computation of powers of (I � ADt)�1.
Of course, the computation of A�1(I � ADt)�1 and

its powers can be made prior to the inverse problem res-

olution. It is nevertheless a laborious operation and even

if it is possible, the storage of these matrices may require

large memory size.

Y it ¼

Y kþ1 � QðI � EDtÞ�1½V̂ k þ RðV̂ it

kþ1ÞDt�

Y kþ2 � QðI � EDtÞ�2½V̂ k þ RðV̂ it

kþ1ÞDt� � QðI � EDtÞ�1RðV̂ it

kþ2ÞDt

Y kþ3 � QðI � EDtÞ�3½V̂ k þ RðV̂ it

kþ1ÞDt� � QðI � EDtÞ�2RðV̂ it

kþ2ÞDt � QðI � EDtÞ�1RðV̂ it

kþ3ÞDt

..

.

Y kþ1þf � QðI � EDtÞ�ðfþ1Þ½V̂ k þ RðV̂ it

kþ1ÞDt� �
Pf
j¼1

QðI � EDtÞ�jRðV̂ it

kþ1þf�jþ1ÞDt

..

.

Y kþ1þnf � QðI � EDtÞ�ðnfþ1Þ½V̂ k þ RðV̂ it

kþ1ÞDt� �
Pnf
j¼1

QðI � EDtÞ�jRðV̂ it

kþ1þnf�jþ1ÞDt

2
66666666666666666664

3
77777777777777777775

ð21Þ
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6. An example of application

A numerical example is presented to test the pro-

posed inverse algorithm. The case considered in [17] to

illustrate the RM identification method is taken. This

is a 3D system shown on Fig. 1: a cube (0.1m · 0.1

m · 0.1m) composed of a material whose thermal con-

ductivity depends linearly on temperature according to

the following law:

kðT Þ ¼ 16ð1þ 0:01ðT � 20ÞÞ ð22Þ

where the local temperature T is expressed in �C.
Eq. (2) is considered, with T = T(x, y, z, t) and

qCp = 4.029106 Jm�3 �C�1.
Associated boundary conditions are written:

�kðT Þ oT
ox
¼ UðtÞ at x ¼ 0 ð23aÞ

�kðT Þ oT
ox
¼ hðT � T aÞ at x ¼ 0:1 ð23bÞ

T ¼ 0 at y ¼ 0 ð23cÞ

kðT Þ oT
oy
¼ 0 at y ¼ 0:1 ð23dÞ

kðT Þ oT
oz
¼ hðT � T aÞ at z ¼ 0 ð23eÞ

kðT Þ oT
oz
¼ 0 at z ¼ 0:1 ð23fÞ

where Ta = 0 �C is the ambient temperature surrounding

east and bottom faces, and h = 50Wm�2�C�1 is a con-

vective exchange coefficient.

A possible initial condition is given by the resolution

of Eq. (2) in steady state when boundary conditions

(23a–f) are applied with U(t = 0).

The domain is discretised using the Finite Volumes

Method, with 11 nodes in each direction. In that way,

a DM of order N = 1331, taking the form of Eqs.

(3a,b), is built.

The inverse problem we consider is relative to the

estimation of the applied heat flux density U(t) from

the knowledge of temperature measurements (simulated

in the present paper) inside the domain.

Remark concerning the location of thermosensors and

the RM�s outputs: in a practical application, the location

of sensors is chosen (after sensitivity study and taking

into account technical constraints) and then the RM is

identified for these points specifically. In the present

paper, RM is built in Part I because the objective is to

West face:
prescribed heat
flux density U(t)

h = 50 W m-2 K-1

h = 50 W m-2 K-1

nodes1331111111

cm1000101010 3

=××
=××

0

Ta = 0˚C

Ta = 0˚C

5

(5,5,5)

EastWest
North

Top

Bottom

South

On south face:
prescribed

temperature 0˚C

North and top faces
insulated

(1,5,2)

(9,5,8)

x (cm)

z (cm)

y (cm)

10

10

10

1 5 9

Point N˚1

Point N˚2

Point N˚3

Fig. 1. System description.

Table 1

Matrices to compute for solving the inverse problem with each model

Steady regime

(Eqs. (9)–(11))

Transient regime

(without FTS) (Eqs. (14)–(16))

Transient regime

(with nf FTS) (Eqs. (19)–(21))

Detailed model A�1 (I � ADt)�1 (I � ADt)�j, j = 1 to nf + 1

Reduced model

(F diagonal matrix)

F�1 (I � FDt)�1 (I � FDt)�j, j = 1 to nf + 1
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expose the reduction method, and it is then used in Part

II for solving an inverse problem with sensors located at

the points for which RM has been built.

Three locations corresponding to RM�s outputs of

Part I are therefore considered for sensors positions

(cf. Fig. 1): the first one near the bottom face and the

west face submitted to the boundary condition U(t),

the second one at the centre of the cube and the third

one near the top face and the east face opposed to the

heated boundary. In Part I of the paper [17], five RMs

of respective order n = 1 to 5, describing the thermal

behaviour of these three points, have been identified.

The RM of order 4 has been validated by comparing

solutions of the direct problem with those obtained

using DM, when two different input signals U(t) are ap-

plied. A reduction of computing time by a factor greater

than 1000 has been observed, without significant loss of

accuracy.

It is proposed here to use this identified RM for solv-

ing the inverse problem. The function U(t) used to test

the inverse algorithm is shown on Fig. 2.

Note: of course, RM has been identified using a dif-

ferent input.

Using Fig. 2 input, temperature evolutions at points

1–3 (cf. Fig. 1) have been computed by solving the direct

problem using DM. nt = 1200 time steps, each one of

Dt = 10 s, are considered. The inversion test consists in

retrieving U(t) from these temperature data, on the

one hand with DM and on the other hand with RM.

In a first step, the estimation is performed using ‘‘exact

temperatures’’ given by DM. In a second step, a random

gaussian noise is added to ‘‘exact data’’ to simulate real

measurements. For a discrete temperature evolution T

containing the initial temperature and nt time steps,

one has

T i ¼ T exact
i þ xir ¼ T exact

i þ DT i 8i 2 ½0; nt�

where r is the dimensional standard deviation of meas-

urement errors which is assumed to be the same for all

measurements and {xi} is a random gaussian distribu-

tion of mean value 0 and variance 1. That means there

is a 99% probability of the value for xi to be in the range

�2.576 < xi < +2.576, hence r = 0.5K corresponds to

errors on temperatures DTi such as 1.3K < DTi <

+1.3K.

Simulated temperature measurements corresponding

to r = 0.5K are shown in Fig. 3.

6.1. The different inversion cases

Four configurations have been studied, on the one

hand with unperturbed data (r = 0 �C) and on the other

hand with noisy data (r = 0.5 �C):
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Fig. 2. Test function for U(t).
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• A single sensor at point no. 1.

• A single sensor at point no. 2.

• A single sensor at point no. 3.

• The three sensors altogether.

Let us introduce two quantities to evaluate the qual-

ity of estimations:

• the mean quadratic error on temperatures rY
between Ym(t) and Ŷ ðtÞ, where Ym is the vector of

temperature data and Ŷ is the vector of the tempera-

tures calculated with the identified inputs:

rY ¼
1

qðnt� nf þ 1Þ
Xq

i¼1

Xnt�nf
j¼0
ðŶ iðtjÞ � Y m

i ðtjÞÞ
2

" #1=2

ð24Þ

• the mean quadratic error on estimated inputs rU
between Uexact(t) and ÛðtÞ, where Uexact is the exact

input vector and Û is the vector of the estimated

inputs obtained by inversion:

rU ¼
1

ðnt� nf þ 1Þ
Xnt�nf
j¼0
ðÛ iðtjÞ � U exact

i ðtjÞÞ2
" #1=2

ð25Þ

The lower rU is, the better the inversion is. In the pre-

sent numerical study, the test input Uexact(t) is available.

In real cases, rU is unknown unless measurements of U

can be made with another method for validation. rY is

therefore the only available quantity in practical

applications.

6.2. Inversion using DM

It has not been possible to find a solution for the in-

verse problem using DM and the simple Euler implicit

scheme used for time integration in the inversion algo-

rithm described in Section 4.1. Nevertheless, it is highly

probable, not to say sure, that a solution can be ob-

tained with DM combined with a more advanced time

integration scheme.

With the simple algorithm described in Section 4.1, it

has not been possible to ensure the convergence when

DM is used, even with Future Time Steps and/or limita-

tion of the number of iterations at each time step, and

whatever the data employed. In supplement, an under-

relaxation method of the solution has been used: at each

iteration it + 1 of each time step k + 1, the following se-

quence is used after the resolution by the linear least

squares method:
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Fig. 3. Simulated temperature measurements.
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U itþ1
kþ1  aU itþ1

kþ1 þ ð1� aÞU it
kþ1 ð26Þ

where a is the under-relaxation parameter (0 < a < 1).

Whatever the value of a, convergence has not been

obtained.

It should be underlined that a solution can be found

using RM and the same algorithm with a simple Euler

implicit scheme. Therefore it appears possible to use

RM along with a rather coarse inversion algorithm,

which seems not to be the case with DM. A possible

(and probable) explanation of that apparently strange

fact lies in the own nature of RM: RM is by essence

slightly less precise than DM because it does not contain

the whole information included in DM: in fact RM�s
small size (a few equations and a few elements) does

not authorize it to reproduce exactly DM�s dynamics.

But its limited number of degrees of freedom allows it

to be less sensitive to round-off errors and, generally

speaking, more robust than DM.

6.3. Inversion using RM

For all configurations except the case of sensor at

point no. 1 and unperturbed data (r = 0 �C), it has been
necessary to use Future Time Steps to take into account

the lagging and damping effects of heat diffusion, as well

as to regularize the inverse problem. When using noisy

data, the number nf of FTS has been determined so that

it satisfies the discrepancy principle, stipulating that rY
should be close to the standard deviation of noise r
[2,19]:

rY � r ð27Þ

When using unperturbed data (r = 0 �C), nf has been
increased until oscillations disappear in the estimated

signal.

Figs. 4, 6 and 8 respectively show the estimation ob-

tained using unperturbed data of a single sensor at point

nos. 1, 2 and 3, although Figs. 5, 7 and 9 respectively

show the estimation obtained using noisy data of a sin-

gle sensor at point nos. 1, 2 and 3. Inversion results using

RM are also summarised in Table 2, including the esti-

mation using the three sensors together. Only an order

of magnitude of the computing time is given, because

it depends on the number of iterations at each time step

and on a possible under-relaxation parameter. Of course

computing time increases with the number nf of FTS.
The further of the heated boundary the sensor is

located, the more its response is lagged and damped in

comparison with the input, and the more sensitive to

measurement errors ii becomes. The inversion is there-

fore more difficult. A dimensionless time step Dti charac-
teristic of the inversion feasibility can be defined as [20]:

Dti ¼
aDt
e2

ð28Þ
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Fig. 4. Estimation using sensor no. 1 with ‘‘exact data’’ (r = 0 �C) and nf = 1.
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where a is the thermal diffusivity (taken at T = 20 �C), Dt
is the time step of the inverse problem (10 s here), and e

is the distance between the sensor and the surface the un-

known heat flux density is applied. The value of Dti al-
lows to evaluate the level of ill-posedness of the

inverse problem. In practice, Dti should be greater than

0.01 [20]. It is equal to 0.4, 0.016 and 0.005 when the sen-

sor is located at point nos. 1, 2 and 3 respectively. The

inverse problem with the sensor at point no. 1 is there-

fore ‘‘easy’’, while it becomes quite difficult with sensor

at point no. 2 and clearly ill-posed when using sensor

at point no. 3. Consequently, as the distance between

the sensor and the unknown heat flux density increases,

it is necessary to use a more important stabilization pro-

cedure to get a solution: the number nf of FTS needs to

be increased in order to take into account heat diffusion

effects (cf. Table 2). For example, when the sensor is lo-

cated at point no. 2, some of the specific variations of the

input signal are hardly perceptible on the temperature

response, and when the sensor is located at point no.

3, they become invisible on the temperature response

(cf. Fig. 3). Consequently, no FTS are needed with sen-

sor no. 1 and ‘‘exact data’’ (nf = 0), but 5 FTS are re-

quired with sensor no. 2 and 22 with sensor no. 3. In
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Fig. 9. Estimation using sensor no. 3 with noisy data (r = 0.5�C) and nf = 26.

Table 2

Inversion results for different cases using RM of order 4

Standard deviation

of noise

Number of sensors

and positions

rY (�C) rU (Wm�2) Number nf of

Future Time Steps

Order of magnitude

of CPU time (s)

r = 0 �C 1 (point no. 1), Fig. 4 9.75 · 10�15 195 0 0.37

1 (point no. 2), Fig. 6 2.66 · 10�2 1322 5 7

1 (point no. 3), Fig. 8 0.146 2648 22 370

3 (points no. 1, 2, 3) 0.178 198 0 0.37

r = 0.5�C 1 (point no. 1), Fig. 5 0.543 1438 3 1.3

1 (point no. 2), Fig. 7 0.522 2705 11 25

1 (point no. 3), Fig. 9 0.595 4493 30 575

3 (points nos. 1–3) 0.548 1464 3 1.3
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this last case, values of nf in the range 0–21 have not led

to a solution: the first solution has been obtained with

nf = 22. Although FTS allow to diminish oscillations,

important information is lost, especially the signal singu-

larities and the sinusoid amplitude (cf. Figs. 4, 6 and 8).

This is confirmed by the increase of rY and rU (cf. Table

2). When the 3 sensors are used together instead of sen-

sor no. 1 alone, the estimation is not improved: the val-

ues of rU are similar for both cases (cf. Table 2, and that

is verified for exact and noised data). That is confirmed

by the value of nf which is the same with 3 sensors and

with sensor no. 1 alone (see Table 2). In addition, the in-

verse problem is already overdetermined as soon as

nf > 0, even with a single sensor.

In the case of perturbed data, measurement errors are

amplified through the inverse problem and oscillations

appear in the estimated signal. Of course oscillations in-

crease with the distance between the sensor and the un-

known heat flux density because the inverse problem

becomes more ill-posed (cf. Figs. 5, 7 and 9). This obser-

vation is confirmed by the increasing value of rU (cf.

Table 2). As previously mentioned, the number nf of

FTS is determined according to the discrepancy principle

(Eq. (27)). Hence rY values are about equal to the stand-

ard deviation of noise r = 0.5 �C (cf. Table 2). In com-

parison with the case of ‘‘exact data’’, nf usually needs

to be increased to obtain satisfying estimations, but with

sensor no. 3 alone, values of nf in the range 0–29 have

not led to a solution: the first solution has been obtained

with nf = 30, corresponding to rY = 0.595 �C (>r =

0.5 �C).
Table 3 shows inversion results for sensor at point

no. 1 when RMs of order 1–5 are used to perform the

inversion. In the case of exact data, the more accurate

is the RM (in terms of the discrepancy between its re-

sponses and DM�s ones, cf. Part I of the paper [17]),

the better is the heat flux density estimation. In the case

of noised data (r = 0.5 �C), the estimation obtained with

RM of order 1 is not good while results for orders 2–5

are satisfying and of similar quality. This can be ex-

plained. The mean discrepancy rid
Y ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J red=ðqðntþ 1ÞÞ

p
between DM and RM of order 1 is 1.4 �C, which is

higher than the standard deviation of noise 0.5�C added

to DM�s outputs, hence the poor quality of RM of order

1 can be seen in inversion results. On the contrary, The

mean discrepancy rid
Y between DM and RMs of

order 2–5 is lower than the level of noise 0.5 �C. The con-
sequence is that the accuracy of these four RMs, increas-

ing from 2 to 5, is no more relevant in that inversion

case, and that the RM of order 2 gives an estimation

nearly as good as the RM of order 5.

All the presented results tend to show the efficiency of

the proposed inversion method and the robustness of the

Reduced Model.

Note. As in many nonlinear problems, in some cases it

has been necessary to introduce an under-relaxation

method (Eq. (26)) in the algorithm described in Section

4, to ensure the stability of the iterative procedure at each

time step. In the present study, relaxation has been used

when a single sensor at point no. 2 or point no. 3 is used.

7. Conclusion

A method for solving nonlinear multidimensional

transient Inverse Heat Conduction Problems using a Re-

duced Model (RM) is proposed in this numerical study.

The RM is identified through a specific procedure

using optimization techniques. In comparison with a

Detailed Model (DM) built with Finite Volumes Meth-

od, computing time for the direct problem resolution is

drastically reduced without significant loss of accuracy.

A sequential algorithm is described, which allows for

the estimation of a time-varying boundary condition or

internal heat source. The Function specification Method

permits to use additional information at Future Time

Steps, in order to take into account lagging and damping

effects of heat diffusion and improve the quality of

estimations.

Table 3

Inversion results for sensor at point no. 1 using RMs of order 1–5

Standard deviation

of noise

RM�s order n rY (�C) rU (Wm�2) Number nf of

Future Time Steps

Order of magnitude

of CPU time (s)

r = 0 �C 1 5.87 · 10�15 9034 0 0.21

2 7.22 · 10�15 630 0 0.26

3 8.61 · 10�15 433 0 0.28

4 9.75 · 10�15 195 0 0.37

5 1.05 · 10�14 159 0 0.63

r = 0.5�C 1 0.530 8707 3 0.64

2 0.543 1552 3 0.8

3 0.555 1401 3 0.93

4 0.543 1438 3 1.3

5 0.542 1445 3 2.6

132 M. Girault, D. Petit / International Journal of Heat and Mass Transfer 48 (2005) 119–133



In this study and for the presented example, whereas

it has not been possible to obtain stable solutions for the

inverse problem with the DM associated to the proposed

inversion algorithm using a simple Euler implicit scheme

for time integration, the same simple algorithm has gi-

ven satisfaction with RM, tending to prove that RMs

can be used with rather coarse inversion algorithms. It

should be noted that RM small size allows very fast

computations and authorises a non prohibitive iterative

treatment of nonlinearities.

A transient 3D example with thermal conductivity lin-

early dependant on temperature illustrates the method. A

time-varying heat flux density is estimated from the

knowledge of simulated temperature measurements inside

the domain. Of course, the quality of the estimation de-

pends on sensors location, but it has been shown that with

a single sensor far from the heated boundary, it is possible

to obtain an estimation of the unknown boundary condi-

tion, even in the presence of measurement errors.

In further studies, experimental data will be used,

either for the RM identification and for the inverse

problem resolution.

Among further developments, let us mention the

extension to the more general case of both thermal con-

ductivity and thermal capacity varying with tempera-

ture, as well as problems involving more than one

independent time-varying unknown. The actual limita-

tions are linked to the reduction method, which is at this

time under improvement.
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method for the inverse natural convection problems, Int. J.

Heat Mass Transfer 44 (1) (2001) 155–167.

[16] A.J. Newman, Model reduction via the Karhunen-Loève
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